A Class of compact operators on homogeneous spaces

Authors

  • Rajab Ali Kamyabi Gol Department of Mathematics, Center of Excellency in Analysis on Algebraic Structures(CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.
  • Reihaneh Raisi Tousi Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.
Abstract:

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a class of compact operators on homogeneous spaces

let  $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and  $h$ be a compact subgroup of $g$. for  an admissible wavelet $zeta$ for $varpi$  and $psi in l^p(g/h), 1leq p

full text

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

full text

Szego Limit Theorems for Toeplitz Operators on Compact Homogeneous Spaces

Let / be a real valued integrable function on a compact homogeneous space M = K\G and M¡ the operator of pointwise multiplication by /. The authors consider families of Toeplitz operators T¡P = PM¡P as P ranges over a net of orthogonal projections from L2(M) to finite dimensional G-invariant subspaces. Necessary and sufficient conditions are given on the net in order that the distribution of ei...

full text

localization operators on homogeneous spaces

let $g$ be a locally compact group, $h$ be a compact subgroup of $g$ and $varpi$ be a representation of the homogeneous space $g/h$ on a hilbert space $mathcal h$. for $psi in l^p(g/h), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $l_{psi,zeta} $ on $mathcal h$ and we show that it is a bounded operator. moreover, we prove that the localizat...

full text

Compact operators on Banach spaces

In this note I prove several things about compact linear operators from one Banach space to another, especially from a Banach space to itself. Some of these may things be simpler to prove for compact operators on a Hilbert space, but since often in analysis we deal with compact operators from one Banach space to another, such as from a Sobolev space to an L space, and since the proofs here are ...

full text

Compact Operators on Bergman Spaces

We prove that a bounded operator S on La for p > 1 is compact if and only if the Berezin transform of S vanishes on the boundary of the unit disk if S satisfies some integrable conditions. Some estimates about the norm and essential norm of Toeplitz operators with symbols in BT are obtained.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 01  issue 2

pages  39- 45

publication date 2014-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023